Stability and hyperstability of orthogonally ring $*$-$n$-derivations and orthogonally ring $*$-$n$-homomorphisms on $C^*$-algebras
Authors
Abstract:
In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.
similar resources
Fuzzy Stability of Ring Homomorphisms and Ring Derivations on Fuzzy Banach Algebras
In this paper, we establish the Hyers–Ulam–Rassias stability of ring homomorphisms and ring derivations on fuzzy Banach algebras.
full text$n$-Jordan homomorphisms on C-algebras
Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.
full textNearly Ring Homomorphisms and Nearly Ring Derivations on Non-Archimedean Banach Algebras
and Applied Analysis 3 Moreover, Bourgin 15 and Găvruţa 16 have considered the stability problem with unbounded Cauchy differences see also 17–27 . On the other hand, J. M. Rassias 28–33 considered the Cauchy difference controlled by a product of different powers of norm. However, there was a singular case; for this singularity a counterexample was given by Găvruţa 34 . This stability phenomeno...
full textHyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras
In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.
full textOrthogonally Additive Polynomials on C*-algebras
Let A be a C*-algebra which has no quotient isomorphic to M2(C). We show that for every orthogonally additive scalar nhomogeneous polynomials P on A such that P is Strong* continuous on the closed unit ball of A, there exists φ in A∗ satisfying that P (x) = φ(x), for each element x in A. The vector valued analogue follows as a corollary.
full textMy Resources
Journal title
volume 07 issue 02
pages 109- 119
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023